首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1972篇
  免费   298篇
  国内免费   376篇
安全科学   490篇
废物处理   86篇
环保管理   344篇
综合类   1095篇
基础理论   241篇
污染及防治   132篇
评价与监测   53篇
社会与环境   76篇
灾害及防治   129篇
  2024年   7篇
  2023年   41篇
  2022年   68篇
  2021年   75篇
  2020年   90篇
  2019年   65篇
  2018年   77篇
  2017年   92篇
  2016年   100篇
  2015年   108篇
  2014年   112篇
  2013年   141篇
  2012年   168篇
  2011年   169篇
  2010年   117篇
  2009年   138篇
  2008年   78篇
  2007年   141篇
  2006年   119篇
  2005年   107篇
  2004年   91篇
  2003年   76篇
  2002年   67篇
  2001年   62篇
  2000年   54篇
  1999年   46篇
  1998年   35篇
  1997年   37篇
  1996年   40篇
  1995年   36篇
  1994年   23篇
  1993年   17篇
  1992年   13篇
  1991年   8篇
  1990年   4篇
  1989年   1篇
  1988年   4篇
  1987年   5篇
  1984年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1977年   3篇
  1976年   1篇
  1974年   1篇
排序方式: 共有2646条查询结果,搜索用时 562 毫秒
1.
Large TNT equivalent explosions usually arise from accidents occurring during the transportation, storage, and manufacturing of chemicals relevant to process industries. The blast wave generated by the explosion will spread and interact with the surrounding factories and storehouses, damaging the building structures within several kilometers and causing significant casualties and property losses. This study aims to develop an efficient numerical simulation method to predict blast loads to estimate the consequences of accidents involving far-field free air bursts or surface burst explosions. Before its interaction with the interested target, a blast wave is generated in the numerical model by specifying the initial and boundary conditions of the disturbed air. Based on empirical data of incident overpressure, an explicit formula to calculate the air particle velocity is derived from the governing equations of a perfect inviscid gas. A simplified path line method is proposed to calculate the air density. The proposed method is applied to the LS-DYNA CESE solver to simulate the blast loads on building structures in the far field. Validations against empirical data and experiments indicate that the proposed method is sufficiently accurate for engineering applications and, through a case study, presents a more efficient performance than the LOAD_BLAST_ENHANCED (LBE) and mapping methods.  相似文献   
2.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   
3.
为了实现密相塔半干法脱硫工艺的精确加湿进一步提高系统脱硫效率,利用推导出的传热传质计算方法,得到烟气温度降低和加水量的关系.结合3组密相塔半干法工程实际数据,发现理论计算值和实测值误差区间仅为2.9% ~5.4%.通过选取河北某钢厂210 m2烧结烟气密相塔半干法脱硫项目实际在线检测数据,发现循环脱硫灰含湿量为3%的系统脱硫效率整体高于含湿量为5%和4%的样品,最大值达93.56%.通过粒度分析、扫描电镜、X射线衍射及差热-热重对2种不同含湿量的循环脱硫灰进行表征,结果表明,含湿量为3%的循环脱硫灰较含湿量为5%的样品粒径小、比表面积大,无团聚现象,物相分析还证实相对于含湿量为5%样品,其Ca(OH)2和结晶水含量少,几乎都是CaSO4和CaS03干态物质,因此脱硫反应进行彻底,脱硫效率较高.  相似文献   
4.
基于国家水专项太湖贡湖湾示范区水质水量调控的需求,构建了示范区的等比例缩放实体模型。通过研究模型中4种不同调水方案的效果,为示范区调水技术的比较与选择提供决策依据。研究中,通过测定模型中5个断面的流场数据,判断引水方式对模型流场的影响,以此评价不同调水方案效果。同时以墨汁作为示踪剂,通过不同引水放流方式下示踪剂的扩散场变化,验证不同断面流速测定对整个区域流场判断的准确性,从而分析引水放流方式对水质的影响。  相似文献   
5.
通过扫描电镜(FE-SEM)、能谱分析(EDX)、X射线衍射(XRD)、LMS-30激光粒度分析等室内试验探究了尾矿库内存在的酸、碱离子对尾矿颗粒的沉降、微观形貌、物质组成以及粒径级配的影响;建立酸、碱影响下的孔隙比与渗透系数的数学关系模型,并将建立的模型用来表征尾矿库内的应力渗-流场两场耦合机制,实现代入有限元计算软件的目的。结果表明:化学因素的存在影响着尾矿颗粒的多项性状,酸性环境下尾矿颗粒发生溶蚀,部分金属元素流失;碱性环境下尾矿颗粒间生成胶结物质,孔隙出现以含氢氧化铁为主的絮状、团簇状堵塞物,改变了渗流速度;尾矿库内浸润线高度在碱性、中性、酸性环境下依次降低,而渗流速度依次升高。  相似文献   
6.
Objective: There have been substantial reductions in motor vehicle crash–related child fatalities due to advances in legislation, public safety campaigns, and engineering. Less is known about non-traffic injuries and fatalities to children in and around motor vehicles. The objective of this study was to describe the frequency of various non-traffic incidents, injuries, and fatalities to children using a unique surveillance system and database.

Methods: Instances of non-traffic injuries and fatalities in the United States to children 0–14 years were tracked from January 1990 to December 2014 using a compilation of sources including media reports, individual accounts from families of affected children, medical examiner reports, police reports, child death review teams, coroner reports, medical professionals, legal professionals, and other various modes of publication.

Results: Over the 25-year period, there were at least 11,759 events resulting in 3,396 deaths. The median age of the affected child was 3.7 years. The incident types included 3,115 children unattended in hot vehicles resulting in 729 deaths, 2,251 backovers resulting in 1,232 deaths, 1,439 frontovers resulting in 692 deaths, 777 vehicles knocked into motion resulting in 227 deaths, 415 underage drivers resulting in 203 deaths, 172 power window incidents resulting in 61 deaths, 134 falls resulting in 54 deaths, 79 fires resulting in 41 deaths, and 3,377 other incidents resulting in 157 deaths.

Conclusions: Non-traffic injuries and fatalities present an important threat to the safety and lives of very young children. Future efforts should consider complementary surveillance mechanisms to systematically and comprehensively capture all non-traffic incidents. Continued education, engineering modifications, advocacy, and legislation can help continue to prevent these incidents and must be incorporated in overall child vehicle safety initiatives.  相似文献   

7.
ABSTRACT

In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient.  相似文献   
8.
Fire and explosion accidents are frequently caused by combustible dust, which has led to increased interest in this area of research. Although scholars have performed some research in this field, they often ignored interesting phenomena in their experiments. In this paper, we established a 2D numerical method to thoroughly investigate the particle motion and distribution before ignition. The optimal time for the corn starch dust cloud to ignite was determined in a semi-closed tube, and the characteristics of the flame propagation and temperature field were investigated after ignition inside and outside the tube. From the simulation, certain unexpected phenomena that occurred in the experiment were explained, and some suggestions were proposed for future experiments. The results from the simulation showed that 60–70 ms was the best time for the dust cloud to ignite. The local high-temperature flame clusters were caused by the agglomeration of high-temperature particles, and there were no flames near the wall of the tube due to particles gathering and attaching to the wall. Vortices formed around the nozzle, where the particle concentration was low and the flame spread slowly. During the explosion venting, particles flew out of the tube before the flame. The venting flame exhibited a “mushroom cloud” shape due to interactions with the vortex, and the flame maintained this shape as it was driven upward by the vortex.  相似文献   
9.
ABSTRACT

Biodiesel emulsion fuel is reported as one of the most feasible options capable of generating lower NOx emission than that from fossil fuels. However, oil and water in the emulsion fuel are easily separated and unstable. The aim of the present study is to consider the production and stability of biodiesel emulsion fuel by using tetraglycerin ester (CR-310), i.e., one of lipophilic surfactant, polyglycerol polyricinoleate (PGPR) and biodiesel, i.e., Waste cooking Oil Methyl Ester (WOME) produced based on waste cooking oil. The corresponding heat rate, water content, and viscosity are measured. Emphasis is placed on the effects of water content and surfactant on biodiesel emulsions. It is found that: (i) stable emulsion fuel is obtained by adding at least 2.0% of CR-310 and is maintained over 1 month, (ii) there is no effect of water content on stable emulsion fuel if CR-310 is used over 2.0%, and (iii) the viscosity of emulsion fuels is higher than that of the biodiesel fuel and is gradually increased with an increase in the water content.  相似文献   
10.
The pipe flange connection is widely applied in chemical, power plants, petrochemical, offshore oil and gas industries, and its strength and tightness are significant for the safe operation. However, there are still no practical and applicable strength and tightness evaluation methods for pipe flange connections working in dramatically varying temperatures. This paper proposed an approach to evaluate the pipeline's strength and sealing performance considering thermal effects in actual operating conditions by combining the experimental measurement and thermostructural analysis. The critical thermodynamic parameters are identified through measured temperature data in operating conditions, and then these parameters are used in the thermostructural analysis to obtain the actual temperature and stress fields. Then, the strength and tightness in complex temperature cases can be evaluated accurately. The pipe flange connection of a liquefied natural gas (LNG) fueling station is analyzed to verify the presented method's effectiveness. This method applies to evaluating the pipeline's strength and tightness and can predict the pipeline's performances under extreme temperatures using the tested data within the measurement range and the corresponding thermostructural analysis. Furthermore, the work in this paper also provides a reference for the design and analysis of pipe flange connections working in complex temperature conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号